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Abstract. The ground-state wavefunctions of the linear octahedral Jahn-Teller system 
T , @ ( E ~ O T ~ ~ )  are shown to exhibit a Berry phase for certain closed circuits in phonon 
coordinate space. This is shown to result from the coupling between the electronic and 
phonon parts of the system and from the requirement that the total wavefunction be 
single-valued. The associated Berry vector potential is also calculated and is interpreted 
in terms of a flux line. 

1. Introduction 

The Jahn-Teller effect has long been known to couple phonon and electronic variables 
in such a way that different parts of the total wavefunction change sign in a coordinated 
manner so as to preserve single-valuedness under rotations in phonon space (Longuet- 
Higgins et af 1958, Herzberg and Longuet-Higgins 1963, O’Brien 1964). Ham (1987) 
has recently shown that such behaviour in the E 0 E Jahn-Teller system is an example 
of Berry’s geometrical phase, a phase acquired by a quantum system moving adiabati- 
cally around a circuit in a parameter space of the system (Berry 1984). Aitchison 
(1988) has also discussed the Berry phase of this system in a more general context. 

The linear TI 0 ( E,@ T ~ , )  Jahn-Teller system, which couples an electronic triplet 
state to triply and doubly degenerate phonon modes, has a sign change phenomenon 
similar to that found in E O &  (O’Brien 1969). Both systems are, in addition, similar 
in that each possesses a continuous potential minimum: one dimensional for E O &  
and two dimensional for TI@( E,@ T ~ ~ ) .  The static Jahn-Teller distortion eigenstates, 
whose energies compose the potential minima, are doubly degenerate over their 
respective phonon coordinate spaces for both systems. We might well expect, therefore, 
a non-zero Berry phase in T,  0 (eg@ T ~ , ) ,  given the E 0 E example and these similarities. 

The experimental evidence for the existence of a Berry phase in the E @ E  system 
is well documented, as Ham (1987) has emphasised. In particular, the recent study 
of the Na, molecular cluster by Delacritaz et a1 (1986) has demonstrated that the 
i-odd-integral quantum number of the E 0 E pseudorotational energy levels is a 
consequence of Berry’s phase. For T I @ ( & , @  T ~ , ) ,  the analogous appearance of an 
odd-integral quantum number in the rotational energy terms serves notice of a possible 
Berry phase. In what follows, we hope to outline the role of Berry’s phase in  the 
T,@(E,@ T ~ ~ )  system, thereby providing a new physical example of this interesting 
quantum phenomenon. 
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2. The Hamiltonian 

The T, 0 ( E ~ O  T ~ ~ )  Jahn-Teller Hamiltonian for a complex with octahedral symmetry, 
assuming linear and equal couplings to the T and E phonon modes, takes the form 
(O'Brien 1969, 1971) 

H = Ho+ HjT ( l a )  

where 

H - -V2+'  - h 2  
mw2q2 

2m 0 -  

and 

( I C )  1 f 48 - f & q c  - f&q, - f&q, 
H j T = V  -f&q, $ q o + f & q ~  -f&qf . [ - fagn - t a g ,  - 4 8  

The q are the five normal-mode coordinates which describe the nuclear motions, with 
qz = X i  qf, and V z  is the corresponding five-dimensional Cartesian Laplacian. HjT thus 
represents a linear interaction of strength V between the phonon modes and an 
electronic p state spanned by the states {It), IT), 15)). We note that, because H is real 
(the system having time-reversal symmetry), the only non-zero Berry phases possible 
will be +1 and -1, the latter being associated with degeneracies (Berry 1984). This 
special situation occurs in all Jahn-Teller systems, not merely TI 0 ( s g O  72g) (for the 
E O &  system, see Ham (1987)). 

Applying the unitary T transformation of O'Brien (1971) to HjT, and expressing 
the result in the non-orthogonal angular coordinates { Q, a, cp, 0, y }  (see, for example, 
Judd 1984, pp 284-6), we find that 

TH,, T-' = VQ 

Expressed in these new coordinates, V z  takes the form 

+[cos( a )  -& sin( a ) ]  
0 

0 
+[cos( a )  + 8 sin( a ) ]  [ 0 0 

i a  1 a 
3 ( Q4$) + Q z  

(3) A: + A', 
sin2(a -2rr/3) s in2 (a+2r /3 )  

where A,, A, and A,, the three components of a phonon angular momentum, are defined 
(Judd 1984) as 

a 
ao 

a 

a 
ao 

a 
(4) 

a 
dY 

A , = i - .  
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3. The ground state in strong coupling 

In the adiabatic approximation, solutions to (1) involve one of three potential surfaces, 
given by the eigenvalues of HJT with the addition of the restoring term mwzQ2. Using 
(2), we see that the lowest of these: 

U = i m u 2 Q 2  - VQ cos a 

is a function of only two of the five phonon coordinates. The minimum on U occurs 
for Q = V /  m u 2  and a = 0, and forms a two-dimensional equipotential surface in the 
full five-dimensional phonon space (see figure 1). As O'Brien (1969) has shown, this 
minimum energy surface can be mapped to the surface of a sphere, with the restriction 
that points on the sphere related to each other by inversion correspond to the same 
point on the two-dimensional equipotential. Specifically, the equipotential is defined 
by setting Q = Qo= V / m u 2 ,  a = 0 ,  y = 0, and by allowing both (o and 8 to vary over 
the domain [0, r ) .  Interpreting 8 and (o as the polar angles for a point on the surface 
of a sphere of radius Qo defines the mapping (see figure 2) .  

Figure 1. The equipotential minimum surface in the five-dimensional phonon space corre- 
sponding to the eigenvalue U. = f mwZQ$ - VQo of H,,+f  mw2Q21. The space is divided 
into two subspaces, (Q,, Qv, Qe)  and ( O r ,  Q e ) ,  to allow for a complete representation. In 
terms of the phonon coordinates, the equipotential minimum can be expressed as a 
parametrisation in the variables 0 and cp: 

Qe = Qo[3(cos el2 - 1]/2 Qc = \/5Q,(sin e)2 sin(2cp)/2 

QE =&Qo sin(20) sin(cp)/2 Q, =&Q,,(sin c o s ( 2 ~ ) / 2  

Q, =&Q0 sin(28) cos(cp)/2 

where 0 and cp both vary over the domain [0, v ) .  The projection in ( QE, Q,,, Qe)  subspace 
is an ellipsoid centred at (O,O, Qo/4); in the (Ql, 0,) subspace, the equipotential projects 
onto a disc of radius J?Q0/2 centred at the origin. 

Given these circumstances, the ground state for this Jahn-Teller system in the 
strong coupling regime takes the form 

* m  = @ ( Q ,  a ) + m ( e ,  v)Y"' IP) ( 5 )  

+ d e ,  d = YAW cp) m = -1,O, +1 (6) 

Y ( ' )  . Jp) = sin(@ j cos(cp )I[) + sin(@) sin(q>lv) + cos(8 j15) 

where 

and @( Q, a) is sharply peaked at Q = Qo, a = 0. Y c l ) (  8, (o), the spherical harmonic 
of rank one, represents motion on the equipotential energy minimum and 

( 7 )  
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Figure 2. The Qo sphere. Path C,  , though closed, does not encircle the 0 = 0 north pole; 
path C, does enclose the 0 = 0 point, since ( 0 , 9 )  = ( T - 0 , 9  + n) by the inversion symmetry 
of the phonon coordinate space. 

is the eigenvector corresponding to -cos(a) in (2). As given in ( 6 ) ,  $,,,(e, cp) is a 
solution to (3) in the limits a + 0, Q + Qo. The derivation of this ground-state wavefunc- 
tion is given in O’Brien (1969, 1971). 

Under inversion in (0, 8, cp) space, Y ( l )  Ip)  changes sign while the phonon coordin- 
ates remain unaltered. This operation of inversion, which does nothing physically to 
the system, must not alter the total wavefunction Y,,,, so $,(e, cp) must change sign 
under inversion. This means that the Y,,,(f3, cp), as eigenstates of (3) ,  must be limited 
to odd values of 1 and that, in particular, the lowest energy level is a vibronic triplet 
corresponding to 1 = 1. 

Though Y ( l )  - Ip) is uniquely defined on the Qo sphere, it is double-valued over the 
equipotential minimum surface. Because of its coupling to $,,,( 8, cp) through the 
variables f3 and cp, a geometric quantum phase, the so-called Berry phase, is induced 
in the wavefunction as the system moves through a closed circuit on the equipotential 
minimum surface. Aitchison (1988) has provided a general discussion on the role of 
Berry’s phase in vibronic coupling phenomena in molecular physics, with particular 
reference to the EO& Jahn-Teller system. In what follows, we shall show that the 
T , O ( E ~ O T ~ ~ )  system is likewise an example and shall calculate both the Berry phase 
and its associated vector potential. 

In calculating the Berry phase, it would be convenient to add a phase to Y ( ’ )  . Ip)  
so as to make it single-valued over the equipotential surface. This can be done for 
every point with the exception of one, which is that point mapped to the poles ( 0  = 0, T )  

of the Qo sphere. (That one point must be excluded is due to the symmetry of the 
spherical harmonic Y(”(f3, cp) under inversion.) Additing a phase exp(icp) to Y ( l )  Ip)  
and defining 

I d Q ) )  = ex~(icp)[sin(f3) COS(CP)~O+ sin(e) s in(cp)l~)+ cos(f3)lr)i (8) 
we see that the inversion condition on the Qo sphere is now built in to Ig(Q)). 

4. Berry’s phase 

Following Berry’s definition (Berry 1984), the geometric phase picked up by the 
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eigenvector Ig( Q ) )  as it follows a closed circuit C in (0, a, cp, 8, y )  space is 
P 

where 

and 

d Q = o D Q + & Q d a + ; t 2 Q s i n ( a - 2 ~ / 3 ) d v t  

+;,2Qsin(a+2.rr/3)dv,+;<2Qsin(a)dvC. 

The five-dimensional gradient operator is expressed in terms of derivatives with respect 
to the (Q,  a,  cp, 8, y )  and the differential vector d Q  is given using the increments 

dvt=sin(y)d8-sin(8)cos(y)dcp 

dv, = cos( y )  d 8  +sin( 8 )  sin( y )  dcp (12) 

dui =dy+cos(8)  dcp. 

We can understand the dv, as the infinitesimal angles of rotation of the octahedral 
ligand complex whose principal axes are characterised by the Euler angles (9, 8, y )  
in the (Q,  a, (D, 8, y )  coordinate system. Following Judd (1984), we can make the 
identifications 

where the A i  are the phonon angular momentum components defined in (4). The 
differential vector dQ, as expressed in ( l l ) ,  has the form of one defined for an 
orthogonal coordinate system {Q,  a, ut, U,, , vL}. Thus V2 and V, though written in 
terms of the non-orthogonal (0, a, cp, 8, y ) ,  have been arranged in orthogonal forms. 
As a consequence, the unit vectors in (10) form an orthonormal set-a great asset to 
calculation. 

A straightforward application of the above equations allows us to evaluate and 
simplify (9), with the result that the Berry phase yg is given by 

sin( 2 y )  
d 8  - fc cos(2y) dcp. 

We shall restrict C to lie on the surface of the Qo sphere since only such paths 
involve the ground state. Under this condition, (13) reduces to 

r 

It is reassuring to note that (14) would remain unchanged had we naively replaced 
(10) with the two-dimensional gradient operator which acts only on the Qo sphere. 

We can now calculate yg( C )  for a closed path C, arbitrary except for the requirement 
that C avoid the poles (referring to the Qo sphere). To be closed, a path must either 
start and finish on the same point ( 6 ,  c p )  or it must finish at the inversion point 
(T - 8, cp + T ) .  An example of the first type is labelled C, in figure 2; C2 illustrates 
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the second case in the same figure. It is clear, considering (14), that yg( C , )  = 0 while 
yg( C,) = -n. We see that only those paths which encircle the 8 = 0 axis (the qe axis 
in the qi coordinates) produce a non-zero Berry phase. To give a better representation 
of this fact, along with the necessity of excluding the Qo sphere poles from C, it is 
informative to consider the Berry vector potential. 

5. The Berry vector potential 

The definition of y,( C ) ,  as given in (9), requires that lg( 0)) be single-valued (at least 
locally) along the path C. This was achieved for Ig(Q)) through the addition of a 
phase exp(icp) to Y")  - Ip) .  The addition of exp(icp) allows us not only to define the 
Berry phase but also forces us to include a new vector potential term in the Hamiltonian. 
Specifically, the momentum operator P +  ( P -  hA) within the kinetic term. This vector 
potential, A=i(g(Q)IVlg(Q)), which is tied to the appearance of y g ( C ) ,  can thus be 
given a physical interpretation within ( Q ,  a, (D, 0, y )  space. From the definition of A 
we see that 

yJC1 = fC  A .  dQ. (15) 

Evaluating A using (8) and (10) gives 

~ cos( y )  cosec( 0 )  ~ sin( y )  cosec( 0)  
" ' 2 Q s i n ( a - 2 ~ / 3 ) - " " 2 Q s i n ( a + 2 n / 3 )  

A =  

= -vQ. (17) 
For paths on the Qo sphere, -V(D represents the vector potential of a flux tube of 

strength -1 along the 0 = O  polar axis. Evaluating y g ( C )  using (15), we see that path 
C2 produces a phase of -1; path C, excludes the flux tube and thus gives a null result. 
The appearance of a -1 phase reminds us of the special case we are considering, 
namely a system with a real Hamiltonian. That the phase is -1 rather than +1 arises 
from the Q = 0 degeneracy in the adiabatic potentials common to every Jahn-Teller 
system. 

By using this definition of A, we have restricted ourselves to calculations using 
paths C for which 1g( Q)) is single-valued (Berry 1984). Thus 8 = 0 is necessarily 
excluded from any circuit, given our earlier definition of Ig(Q)). The remaining 
singularities in A correspond to degeneracies of the adiabatic surfaces at Q = 0 and 
at a = * 2 n / 3 .  The close correspondence to E 0 E remains, for in that system which 
involves an electronic doublet, A = f V 8  which represents a flux tube of strength 4 
(Aitchison 1988). 

6. Concluding remarks 

The appearance of a Berry phase in the TI 0 ( E,@ T ~ , )  system has been seen to be tied 
to the occurrence of a ground-state triplet. Though we have not formally proved this 
correspondence, the double-valuedness in Y( ' )  * Ip )  which gives rise to both the Berry 
phase and the I = 1 condition makes the connection clear. Again, the analogy to E 0 E 

would lead us to the same conclusion regarding T , @ ( E ~ @ ~ ~ ~ ) .  
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The Hamiltonian expressed in (1) is rather specialised as regards physical systems, 
assuming as it does equal couplings to the T and E modes. Yet some systems do appear 
to obey this so-called D-mode assumption. We mention in particular the F+ centre 
in CaO studied by Hughes (1970) and Romestain and Merle d’AubignC (1971) and 
the KMgF,:Fe2+ system investigated by Ray et a1 (1973). The ground-state triplet and 
the higher rotational levels labelled by odd-integral quantum numbers have been 
observed in both systems. 
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